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J. Phys. A: Gen. Phys., 1970, Vol. 3. Printed in Great Britain 

An expansion of the master equation with applications to 
coupled atom-radiation systems 

E. R. PIKE and S. SJVAIK 
Royal Radar Establishment, Great ILIalyern, Worcs., England 
A4S. receiced 19th iwarch 1970 

Abstract. A straightforward extension of time-dependent quantum-mechanical 
perturbation theory is made to obtain the equivalent formulae for a statistical 
mixture of states. The ‘master equation’ resulting from this procedure is, in 
its lowest order, the analogue in quantum statistics of the ‘Golden Rule’ for 
transition rates and reduces exactly to this form in the limit of pure initial 
states. We give results to fourth order and illustrate their use by applying them 
to the problem of the resonant interaction of an electromagnetic field and a 
two-level atom. 

1. Introduction 
The von Xeumann equation of motion for the density matrix might be called the 

very basis of quantum statistical mechanics. Starting with Pauli in 1928 attempts 
haye been made to process this equation to obtain an equation connecting diagonal 
elements only and having the gain-loss structure typical of the Boltzmann equation. 
Such an equation is called a master equation, and derivations have been presented, 
for example, by Van Hove (1955), Prigogine (1962), Swenson (1962) Zwanzig (1964) 
and Pike (1965). The  mathematical techniques used in these papers are sometimes 
complex and, although progress has been made (see for example Argyres and Kelley 
1964 and Haake 1969), it is not always easy to see how to apply the master equations 
so derived to real physical systems. 

In  this paper we present a derivation of an irreversible master equation by a 
generalization of the methods of ordinary perturbation theory to deal with quantum 
statistical mechanics. The  derivation proceeds in two stages. In  the first stage we 
present the terms to fourth order of the exact time-reversible perturbation expansion 
for the density matrix. This result is essentially that derived by Pike (1965) using a 
Fourier-Hilbert transform technique but the derivation here we believe is simpler to 
follow. In  the second stage the essential additional step we make is to introduce a 
small density-of-states spread onto the levels of the unperturbed system in the equa- 
tion of motion for the density matrix. Although novel in this context this is entirely 
equivalent to the procedure described in any text book for obtaining the ‘Golden 
Rule’ formula for transition rates for pure states. By integrating in the usual way over 
these small spreads of states (which do not represent practically observable states of 
the system) we introduce irreversible behaviour and we are able to derive an equation 
for the density matrix, which we regard in its lowest order as no more than the ‘Golden 
Rule’ for mixed states and in its higher orders as the exact generalization of the 
higher-order terms of time-dependent perturbation theory for quantum statistical 
mechanics. This equation is valid over the same time scale as ordinary time-dependent 
perturbation theory (Dirac 1958-p. 181). From this equation we are able to derive 
a master equation in terms of course-grained time derivatives of the density matrix. 

The density-matrix method has proved to be one of the most fruitful methods of 
calculating the statistical properties of laser light (see, for example, Fleck 1966, 
Scully and Lamb 1966, Lax and Louise11 1967 and Wiedlich et al. 1967). A knowledge 
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An expansion of the master equation 347 

of the diagonal elements of the density matrix for all time enables one to calculate the 
dynamic and steady-state values of the intensity of laser light, as well as the statistical 
distribution of the number of photons in the cavity mode (see Pike 1970 as well as 
the papers listed above). In  the final section of this paper, for illustration, we apply 
our master equation to the problem of an atom interacting with a cavity mode of 
electromagnetic radiation in the presence of dissipative reservoir interactions and 
pumping mechanisms. We are able to derive the equation for the photon number 
distribution (i.e. the probability that there are n photons in the field) directly and we 
compare it with the laser equation of Scully and Lamb. 

In  $ 2  we present the perturbation-theory derivation of the time-reversible 
equation for the diagonal elements of the density matrix. In  4 3 we perform the sum 
over intermediate states to obtain the time-irreversible equation and we show that, 
after an appropriately long time, any initial off-diagonal elements of the density 
matrix make a constant (in time) contribution to the diagonal elements. Provided 
that this time is not so large that the perturbative method ceases to be valid, or that the 
master function changes appreciably in this time, we are able to show that the off- 
diagonal elements make a negligible contribution to the equations of motion for the 
diagonal elements. In  this way we are able to derive a master equation in terms of 
coarse-grained time derivatives. The  functions which satisfy this equation give the 
averaged time evolution of the density matrix (the meaning of “averaged” in this 
context is made apparent in 4 3). In  5 4, as stated above, we apply the master equation 
to the problem of atom-field interactions. 

2. The time-reversible equation 
We consider a system described by the Hamiltonian 

H = Ho+gV (2.1) 

H o l y )  = E r j Y ) *  (2.2) 

Prs(t) = TrMO) l ~ ( t )  ) (4t)  I >  (2.3) 
prs(t) = exp(iE,st)p,s(t), Er, = Er-E, (2.4) 

where g, the coupling constant, is a small parameter. The  eigenstates and eigenvalues 
of H ,  satisfy the equation 

We define our master functions P,,(t) and prs(t) as follows (Pike 1965) 

where p ( 0 )  is the density operator at t = 0.  It obeys the von Neumann equation 

Equation (2.4) represents a transformation to the interaction picture. The  equation 
of motion for pVs(t) follows from equations (2.1)-(2,5) and is 

This equation is easily integrated to give 

4 J o  
This is the equation we use as the basis of our perturbation expansion. We adopt a 
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348 E. R. Pike and S.  Swain 

new notation which makes the equations more concise 

Aprs(t) = g 2 [UsqPrdt) - U,rpqs(t)I (2.8) 
Q 

where USq is the integral operator, operating on functions of t :  

U,, f ( t )  - 1 dt’ V,, exp(iE,,t’)f(t’). (2.9) .i’: 
We shall encounter expressions of the form 
as 

4 1 / 1 q S f ( t ) .  These are to be interpreted 

n t  

( -  i)2 dt‘ V r q  exp(iE, 4 t ’ )  dt“ VqS  exp(iE,,t”)f(t”). 

We make the assumption that our master functions can be expanded in series of the 
form 

0 ia 
m 

p,s(t) = prico’(t) a , , +  2 g’xpprs(n)(t) t 2 0 .  (2.10) 
n = l  

We have assumed that in the limit g --f 0 the master functions become diagonal. This 
would be the case, for instance, if the density matrix were diagonal in the infinite past. 

By substituting from (2.10) into (2.8) we obtain the following set of equations: 

P,’co) ( t )  = P?l‘o’(o) (2.11) 
(2.12) pys(l)(t) -prS“’(O) = U,,[P? r‘o’(t) -pss‘o’(t>l 

and, for ia  2 2, 

prs’”’(t) -p,S’”’(O) = 2 [Usqpr;n- l ) ( t )  - U4npqs’n-1’(t)]. (2.13) 
4 

One obtains prs( l ) ( t )  in terms of master functions evaluated at t = 0 by substituting 
from (2.1 1) into (2.12). This expression for prscl)(t) is substituted into equation (2.13) 
for ia  = 2 to obtain p r S ( 2 ) ( t ) ,  and so on. By these means one can derive an equation 
for p r s ( t )  to any order in terms of the initialp,,(O). The  result to fourth order may be 
written as 

APrs,4(t) = -Yrs,4(t) + Q)rs,4(t) (2.14) 

where the notationp,,,,(t) means the Yalue ofp,,(t) correct to the fourth order, i.e. 
4 

P ! S , 4 ( t )  = 2 gzPrs(t’(t). 
t = 0  

The first term of the right-hand side of (2.14) is 

-v r s ,4 ( t )  = g[usrprr ,3(0)  + h3c.I +g2 2 [Lisq l  ~ - q l r @ q l q , , 2 ( 0 )  - ~ s s , 2 ( 0 ) )  +h.c.I 
91 

+g3 c c [ ~ r S 4 2 ~ 6 2 4 1 ~ 9 , r { p r r , l ( 0 )  -P,,c!,,l(o)l 
91 42 
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where +h.c. means add on the term with Y and s interchanged and the complex 
conjugate taken. Thus the first-order term above in full is 

g[Usr~rr.3(0) + U,s*~ss,3(0)1 

U,,* = - Cs7. 

which is equal to gUsr[p,, ,3(0) - P ~ , , ~ ( O ) ]  since 

The  second term of the right-hand side of (2.14) is 

L?)).%4(9 = g[ c Usq,Prq,,3(0) + h.c.1 
41 # 7 

+g2 c [ c ~ s Q z U 4 2 4 1 P 1 4 1 , 2 ( o ) -  c ~ s 4 , ~ Q 1 r P q l ~ ? , 2 ( 0 )  +h.c.] 

+g3 c c [ c ~sq3u4342Ua241P14111(o) 

42 41 f 7  41 9 42 

q3  4 %  q l # r  

- 2 ~ T s a , u q 3 q , L r q l i  Pal,,,l(0)- 2 Usq,Uq2rUaq1 P q , a 1 , ~ ( O )  
1 7 1  f 4 2  4 1 #  42 

+ c Usq3~qzrU4142 P, , , ,  l(0) + h.c.1. (2.16) 

We have arranged terms so that the N,,(t) terms contain only diagonal master 
functions whilst the Q,,(t) terms contain only off-diagonal master functions. We shall 
show later that the QJt) term can be neglected compared with the Nrs(t)  term in the 
long-time limit. (We shall explain the meaning of the long-term limit in $ 3.) 

Returning to the expression for N,,(t), it is clear that its accuracy to order g4 is 
unaffected if we replacep,,,,(O), P ~ , , ~ ( O )  etc. by p,,(O) given by (2.10) (i.e. the exact 
initial density matrix). This substitution adds only terms of fifth order in g. 

In  the Appendix it is shown that N,,(t) can be written in the much simplified 
form 

81 j. 4 3  

2hrrr,4(4 = -g2 c ( ~ 7 4 1 ) ( ~ w ) [ P r r ( 0 )  -P41v1(o)1 
cil 

+g3 2 2 [( o-q1 I ) (  Urq, Uq2 ql) - ( L-rql)( U,, q 2  Uq2 ,>I [ ~ r t ( O )  -PQ, ql(O>I 

+g4 c c c [ ~ r 4 , U q 3 q l ) ( ~ 7 4 2 r U 4 1 ~ 2 ) -  ( U r 4 , U q , * , L r q , g , ) ( ~ : g , r )  

41 42 

q1 q 2  a3 

- (Urq,)(Uq,q,Uq,4,Uq3r)l[prr(O) -~q,q~(O)l. (2.17) 

Written in this way, the expression for NPS( t )  closely resembles that obtained in the 
usual perturbation theory of transition probabilities (see, for example, Dirac 1958- 
pp. 172-5). Indeed (2.17) reduces to the usual formula for the probability that the 
system will be in the state Y at time t if it was certainly in the state K at time zero. 
i.e. 

Terms in ( U,,,)( Vql,)  and ( U,q,Gq,ql)( Uq2rU414z)  which have an equal number of 
terms in each bracket we will refer to as ‘direct’ terms by analogy with perturbation 
theory and terms such as ( Gqlr) ( Urq,Ljq,q,) and ( UiQ3U43q2Uq341) ( UqlT)  we will refer 
to as ‘interference’ terms. 

Pkck(0) = 1, P,,(O) = 0 ,  q #  k. 
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In  the next section we shall introduce the sum over the intermediate states and 
derive the master equation, We shall show that, in the long-time limit, 

i l p Y , . ( O  N,,(t). 
After summing over the broadened levels, this will reduce to (again in the long- 

time limit) 

ql  

an equation which exhibits the gain-loss structure referred to in the introduction, 

3. Broadening of the levels 
We wish to generalize our equations to the situation where each eigenvalue E,., 

instead of being sharp and discrete, has associated with it a continuum of eigenvalues 
labelled by an o!, (or o! for short). The energies of the cr-state are measured from 
the energy E ,  and are assumed to form a narrow band centred on E,. I t  will be 
convenient in the later stages to assume that the density of the cr-states has a Lorent- 
zian profile centred on E,, i.e. 

where hr(cr) is the density of the states associated with the Y states and rr  is the half- 
width. We wish to trace over these states to obtain our final equations since they do 
not represent practically observable states of the system. If we consider as an example 
an atom interacting with a single mode of radiation, this broadening could be thought 
of as originating from transitions of the atomic levels being considered to atomic levels 
of no direct interest, or due to a small spread in frequency of the radiation mode. 

Our equations will be changed by this device only to the extent that the label Y 
must be replaced by the Y X ,  s by sp, etc. Since the broadening is small, we make the 
further assumptions 

v,,,,, v,., 
~ y a , s b ( O )  P r d O ) .  

The time integrals involved in (2.17) can be written out explicitly as 

For brevity, we shall treat in detail only the second-order contribution to NTy( t ) ,  and 
merely quote the results for higher orders. 

From (2.17), 
A T y r c z Y t )  = - g 2  2 (urql>( uqlr)[PdO) - ~ q l q i ( O ) I  - 

Ql 
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We shall now evaluate this quantity explicitly when level broadening is introduced. 
Using (2.17), (3.4) and approximations (3.2) and (3.3), we have 

The  integral in equation (3.7) is exactly that encountered in the first-order perturba- 
tion theory of transition rates, where one is considering a transition from an initial 
state to a continuum of final states (see, for example, Schiff 1955-p. 199). In  the 
usual treatment, one assumes that only the pole on the real axis contributes, i.e. 

However, it can be evaluated exactly for the spectrum (3.1), and the result is 

2+',1/7i)t 

(Eral + rqp 
- + -______ 

We are now able to explain what we mean by the long-time limit. We mean for 
values of t sufficiently small for perturbation theory to be valid, but sufficiently large 
that F q t  1. In this case (3.9) reduces to 

Substituting for I from (3.8) into (3.7), we have 

(3.13) 

Defining Ap,(t) and Q,(t) analogously to Nr(t)  in equation (3.11) and calculating 

(3.14) 

to fourth order we find that 

A ~ y ( t )  = - t 2 K ( Y ,  41)[PplT(O) - ~ q ~ q ~ ( o ) I  + Qr(t) 
41 
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where 

where c is a contour which lies along the real axis except for passing beneath the pole 
at E ~ ~ + E ~ , ~  = 0;  similarly, 

Equations (3.16), (3.17) and (3.18), when evaluated for the case of Lorentzian 
profiles, as \vas done in (3.13) above, are 

1 1 1 
h(r ,  q1q2q3) = - + __- + + [r 11 r3 rr2r r l  r3  1 r Z l  r3 r r  2 r r3  1 2 ;r3 1 2 1 

and 
- 1 1 1 
h(r ,  414243) = - -~ + +-- [r 3 r 3 1 32 ?‘ 1 I‘3 r 2 ?‘ r l  r Z  r r  3 2  

1.  1 1 
t + + 

rr11’31r2r r31r32r2r r 3 2 r 2 r r 2 1  

Equation (3.14) is close to the required form. I t  remains to show that QV(t)  makes 
no contribution to Apr(t) in the long-time limit. The  integrals over the level-broad- 
ened states can be performed in exactly the same way as we did for the N,,( t )  terms. 
Assuming Lorentzian profiles we obtain, in the long-time limit (rt >> 1) 

(3.19) 

The  essential thing to notice about equation (3.19) is that it is independent of time. 
Thus by making t sufficiently large, Nr(t), which is linear in t ,  can always be made to 
dominate Q,.(t), which is time independent. XOW if there exists a time interval At 
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sufficiently large that &(t+ At) < N,(t+ A t )  but small enough that 

then me can write 
EP4t + A t )  - P r ( a , h ( t )  < 1 

(3.20) 

where 8p,/6t is a coarse-grained time derivative. This equation is our master equation 
for p l ( t ) ,  with the kernel K(y, ql)  given by equation (3.15). 

4. Application to the coupled atom-radiation problem 
In  this section we shall apply the above master equation to a simple system. Our 

model is that of a single two-level atom interacting with a mode of the electromagnetic 
field in a cavity. The particular problem in which we are interested may be character- 
ized by the so-called ‘adiabatic approximation’ for the time development of the 
density matrix in which the rate of atomic transitions is much greater than the rate of 
change of the field. In  addition, the mean state of excitation of the atom is preserved 
over long times by an unspecified pumping mechanism, as would be provided, for 
instance, in a discharge tube. 

We have already mentioned that in this case the level broadening may be attributed 
to the atomic levels being unstable with respect to transitions to lower levels unspeci- 
fied, or to the electromagnetic field having a small spread in energies. In  either case, 
the broadened states represent unobserved coordinates, or a ‘reservoir’. T o  be 
definite, we assume Lorentzian profiles for the broadening, and we need two half- 
widths, rU and PI, associated with the upper and lower atomic states respectively. 

For simplicity, we assume resonance, i.e. that the unperturbed energies of the 
atomic and field quanta are the same. We shall not write out the reservoir inter- 
actions explicitly. The  system Hamiltonian (using a system of units in which fi = 1) is 

H = (a ta+3)W+a,w+(ga+o-  +g*ao+) (4.1) 

where a+ is the creation operator for a photon of energy W ,  a +  = a , t i a U ,  
a -  = a,-io,, ox, oy and o3 are the Pauli spin matrices. The  final term in (4.1) 
represents the interaction between the field and the atom in the so-called rotating- 
wave approximation. This approximation results from using photon states with one 
component only of circular polarization. 

We shall be concerned here only with deriving the equation satisfied by p,,?(t)-  
the probability that there are n photons in the field at time t .  For discussions of the 
nature of the solutions, see the papers listed under laser theory, or the review by 
Pike (1970). 

Let In, U >  be the state vector of the uncoupled system in which the atom is in 
its excited state and there are n photons in the field, and In, 1) the vector when the 
atom is in its ground state with n photons in the field. In  the system described by 
(4.1), the only transitions possible are of the type 

/n, l i ,  n - l , u  /etc. 
7.2, 1 

n -  1, u ‘Y 
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The matrix elements of the interaction which we need are 

(n ,  U [  Vin+ 1 , l )  = g*(n+ 1 ) ' ~ ~  

(n ,  1IVln- 1, U )  = gdn.  
(44 
(4.3) 

We have already evaluated the quantity h ( ~ ,  q)  for a Lorentzian profile in equa- 
tion (3.12), and it is straightforward to show that 

3Iaking use of the fact that, because of the special nature of the transition scheme, 
the third-order terms and fourth-order direct terms do not contribute, we can write 
down the master equations for p n U ( t )  and pn+l,l(t) from equation (3.20) as 

It is important to remember that, because we are working with coarse-grained 
derivatives, the adiabatic approximation is already built into equations (4.4) and (4.5). 
(This means that we are observing the gross time behaviour of the system averaged 
over many lifetimes FU- l  and However, it is sometimes of interest to examine 
the time evolution of the system on a finer scale than this (see, for example, Haake 
1969-in which the theory of the laser is developed beyond the adiabatic approxima- 
tion).) We make the further approximations on the right-hand sides of (4.4) and (4.5), 
which are valid for weak coupling, 

[ P n u ( t )  - - P n +  l.l(t)I .Ll(t)P,(t) - Odt)P,,+i(t)  (4.6) 
[Pnl( t )  - P n -  1,u( t ) l  2: ~ l ( t > p n ( t >  - au( t )pn - l ( t )  (4.7) 

where a,(t) and ul(t) are the average probabilities (over many lifetimes) of the atom 
being in its excited or ground state respectively at time t. We have assumed the 
existence of a pumping device which maintains the average atomic populations 
constant, therefore we can assume that au(t) = uu, ul(t) = U,. 

The master function for the field is p,( t )  = p n U ( t )  + p n l ( t ) .  Substituting (4.6) and 
(4.7) into (4.4) and ( 4 4 ,  and adding, we obtain an equation for p n ( t )  

where 

Equation (4.8) as it stands is sufficient to describe thermally generated light fields 
(Pike 1970) in a lossless cavity. In  this case it is sufficiently accurate to take only the 
first-order term in \gI2 in F,. 
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In  a laser, where the atomic levels are maintained at an inverted population by 
pumping, it is necessary to retain the higher-order terms in (4.9). (Indeed, Scully 
and Lamb obtain F ,  to all orders in [gI2 to describe the laser at high pumping levels.) 
We must also allow for the loss of radiation from the cavity (Pike 1970) by adding a 
term - Cnp, to the right-hand side of equation (6). Since a loss of one photon from 
the (n+ 1)th level automatically means a gain in the occupation of the nth level we 
must also add a term C(n+ l ) ~ , + ~ .  Our final equation for the field density matrix 
of one atom interacting with a radiation field in a lossy cavity is then 

Bearing in mind that Scully and Lamb implicitly assume Fnt la l  < C, our result 
agrees with the expansion of their equation to first order in B/A  if we make the 
correspondences 

Our derivation of this laser master equation using equation (3.20) above bypasses the 
ab initio calculation of Lamb and Scully and deals with the difficult question of 
irreversibility in the problem in a manner which is quite different in detail from that 
adopted by these authors. By emphasizing the concept of the master equation as the 
equivalent of the well-known and well-used perturbation series method, when working 
with quantum statistics and mixed states rather than quantum mechanics and pure 
states, we hope to have rendered its application more evident for this type of problem. 

Appendix 
In  this appendix we indicate how the simplification of N,,(t) from the form given 

in (2.15) to that given in (2.17) is achieved. T o  do this we require the following 
mathematical identities : 

These relations are easily proved by integration by parts. As an example, we prove 
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the first: 

U,U, = f dt, V,(t,) J t 2  dt, V2(t2) 
0 0 

= [r dt’ Vl(t’)fl  dt, V , ( L J ] ~ ~ = ’ -  r=t dt , ( f l  V,(t’) dt’)V,(tl) 
0 0 t l = O  t 1 = 0  0 

= 1; dt, V&df dt, V,(tZ> - 1; dt, V,(t) j1 Vl(t2) dt, 
0 0 

i.e. 
= ( U,)( U,) - U,  U,. 

T o  obtain the first term in (2.17) it is necessary to show that 

Urql U4,r + Urq, LTall. = ( UWlN 

This is just the relation (Al) with y q ,  = 1, q , ~  = 2. Similarly, to establish thesecond 
term of (2.17) we first rewrite the third term of N J t )  given by (2.15) as 

2 2 (LTrriz uq2q1 Uqlr - LTq2r Uq1Pz UrdPr(0)  
41 4 2  

+( -  Uiq2uq2qlUglr- Uiq,Uq,rUq2ql+ Urq,Uq,rUq,q,+h.C.)Pa,(~)}. 

By using (-42) and (Al)  the first contribution can be written as 

c c { - ( Uraz)( Uqlr %a1) + ( U,, 1 )( brl 4 2  ~ q 2 , , ) l P r ( O )  * 
41 92 

We can interchange q,  and q2 in the first term, when the expression reduces to 

c c { (UQlr) (~r4 ,U4,qI )  - ~ ~ ~ 4 1 ~ ~ ~ 4 z r ~ 4 1 4 2 ~ 1 P r ~ ~ ~ ~  (246) 
41 42 

The second contribution is likewise reduced by using first (Al), then (A2). The  

41 42 

(A6) and (-47) together give the second term of (2.17). The third term of (2.17) can 
also be obtained by using the relations (Al)-(A5). 
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